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Precision medicine promises improved health by accounting for individual variability in genes, environment,
and lifestyle. Precision medicine will continue to transform healthcare in the coming decade as it expands in
key areas: huge cohorts, artificial intelligence (AI), routine clinical genomics, phenomics and environment, and
returning value across diverse populations.

Ever since the completion of the first hu
man genome sequence in 2003,
clinicians have anticipated a data-driven
transforma tion in healthcare. New troves
of molecular and phenotypic interrogation
would lead to refined diagnoses, more
rational treat ment, and prevention of
disease. In 2011, an ad hoc committee at
the National Research Council argued for
a ‘‘new tax onomy of human diseases’’
based on the emerging field of precision
medicine (US National Research
Council, 2011).

Today, some of that promise has
already been realized. Researchers are
routinely using healthcare data for discov
ery, identifying genomic underpinnings of
cancer and many other common and rare
diseases, introducing transformative
molecularly targeted therapies, and
leveraging massive computational capa
bilities with new machine learning
methods. We are beginning to see the
fruits of these efforts.

There is perhaps no more poignant
example than the response to the
COVID-19 pandemic. Genomics and mo
lecular technologies were key in identi
fying the etiologic agent, developing diag
nostics and treatments, and creating
vaccine candidates. Rapid case reporting
quickly exposed vast health disparities
with COVID-19 and highlighted the impor
tance of capturing a more detailed under
standing of social determinants of health.
Large-scale consortia based on health
care data quickly assembled huge data
sets for rapid investigations of risk factors

and outcomes, demonstrating the power
of amalgamated healthcare data. Pooling
data from existing research cohorts
enabled rapid genomic studies that have
identified loci associated with disease
susceptibility and patient outcomes.
COVID-19 has also called attention to the
need for longitudinal cohorts to iden tify
clinical and biologic risk factors and
long-term sequelae for acute infectious
disease. Many of the elements of the
response to COVID-19 are basic capabil
ities underpinning precision medicine.

At the same time, COVID-19 has high
lighted the need for precision medicine to
move further and faster. In this paper, we
suggest seven opportunities to accel
erate an equitable realization of the prom
ise of precision medicine (Figure 1). Their
impacts are outlined in Table 1.

Huge, interoperable, longitudinal
cohorts
Over the last two decades, national co
horts such as the UK Biobank, the Million
Veteran Program, FinnGen, and the All of
Us Research Program have amassed
huge populations with genomic, labora
tory, and lifestyle assessments as well as
longitudinal follow-up on health out
comes. The depth and breadth of the
data are staggering, as are the opportu
nities for discovery across every area of
medicine.

In order to maximize the impact of
these resources, an ‘‘open science’’
approach is emerging. For example, the
UK Biobank has opened its doors to
more than 19,000 ‘‘bona fide re
searchers’’ from 80 countries, and re

searchers can start using the All of Us
Research Program’s data cloud in as
little as two hours after initial login.

The next step is clear: make it easier
for researchers to merge data from
multiple cohorts. Currently, this requires
pains taking manual phenotype
adjudication and building large consortia
including ex perts from each cohort.
Fortunately, there are efforts underway to
improve this pro cess. Groups such as
the Global Alliance for Genomics and
Health (GA4GH) are working to develop
and to coordinate common data models
and file formats to facilitate collaboration
and interopera bility. In recognition of the
need for better collaboration, the
International Hundred Thousand Plus
Cohort Consortium (IHCC) has brought
together more than 100 cohorts in 43
countries comprising more than 50
million participants—nearly two orders of
magnitude bigger than the biggest single
cohort today (Manolio et al., 2020). It
would be hard to overstate the impact
this work could have on global research
efforts.

Improved diversity and inclusion in
science
One of the biggest challenges (and oppor
tunities) before the biomedical enterprise
today is the lack of diversity in
populations involved in research studies.
Less than 3% of the participants in
published, genome-wide association
studies are of African or Hispanic or Latin
American an cestries, and 86% of clinical
trial partici pants are white (Knepper and
McLeod, 2018; Mills and Rahal, 2020).



The lack of diversity in research risks exacerbating
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Figure 1. Seven opportunities for precision medicine by 2030
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velocity, come in many varieties, have sig nificant variability, and
have intrinsic value. However, AI approaches in medicine have
been limited by the (un)availability of large, commonly structured
datasets.
Looking forward, biomedical datasets will become increasingly

ready for ana lyses. As we discuss in the following sec tions, the
growth of clinical data (including image, narrative, and real-time
monitoring data), molecular technologies (genomics principal
among them), and the availability of devices and wearables to
provide high resolution data streams will dramatically expand the
availability of detailed pheno type and environmental data not
previ ously available at this scale. Applications of machine
learning approaches could result in new taxonomies of disease
through genomic, phenomic, and envi ronmental predictors.

Routine clinical genomics to guide prevention, diagnosis, and
therapy Today, clinical genomic analysis is typi cally performed
only when evaluating certain cancers or when a rare genetic
disease is suspected, and many commonly ordered tests only
evaluate a few genetic loci. Moving forward, whole genome
approaches will become a routine, early step in the
understanding, prevention, detection, and treatment of

health disparities and also impoverishes
biologic discovery that could be appli
cable to all populations.

With a growing depth of data, we have
an opportunity to replace adjustments for
race and ethnicity with more specific
measures. In particular, ‘‘race’’ conflates
a plethora of social, cultural, political,
geographic, and biologic factors together
and can perpetuate systemic racism.
Routine collection of social determinants
of health in both research and clinical
care in combination with more precise
measures of environmental influences,
habits, and genetic ancestry can provide

more rational, etiology-based adjust
ments and yield better risk stratifications
and treatments (Wilkins et al., 2020).

As we work toward increasing the diver
sity of populations in studies, we should
also increase the diversity of the biomed
ical research workforce. A more diverse
workforce—in culture, ancestry, beliefs,
scientific backgrounds, and methodolog
ical approaches—brings increased under
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standing, innovation, trust, and cultural
sensitivity; is more likely to pursue ques

tions relevant to different audiences; and
ultimately delivers better research
(Hofstra et al., 2020).

As international collaborations grow,
researchers will also need to consider
the ethics of international collaboration
and rotate leadership, authorship, and re
sources to ensure that research benefits
developing countries as well as more
advantaged ones. Establishing interna
tional infrastructures and science facil
ities—not just access to samples and
data—will produce long-term benefits
that accelerate health and capabilities.



Big data and artificial intelligence Big
data and artificial intelligence (AI) are
transforming previously intractable prob
lems such as search optimization, lan
guage translation, image interpretation,
and autonomous driving. Many accrued
biomedical data sets meet all ‘‘5 V’s’’ of
big data since they are voluminous, high
common and rare diseases.

Rare diseases will increasingly be diag
nosed using genomic investigation as a

cheaper and more efficient alternative to
targeted approaches. Early genome
sequencing can solve diagnostic di
lemmas and uncover ‘‘hidden’’ Mende
lian diseases such as unexplained kidney
disease, atypical diabetes, or unex
plained development delay (Turro et al.,
2020). Some of these Mendelian dis
eases point to specific new treatments
and screening strategies that could
dramatically improve health, such as sul
fonylureas for young diabetic patients

with HNF1A mutations or specific causes
of liver or kidney failure.

The last decade has also shown that
many common conditions, such as dia
betes or hypertension, can be associated
with genetic risks at thousands of loci,
often found using huge genetic studies
aggregating data across hundreds of
thousands of participants. While many of
these genetic loci may have very small
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Table 1. Envisioning how precision medicine will affect clinical medicine and research in the next decade Where we are

today Where we will be in 2030

Clinical applications

Genomics for disease Primarily limited to rare disease and select
cancers.

Pharmacogenomics (PGx) Common in cancer and within select
applications of older medications at
select sites.

Genomics for healthy individuals In research, whole-genome
sequencing and search for
mutations in one of the
ACMG59 genes, present in
about 3% of people. Variant
interpretation is hard.

EHRs Episodic capture from healthcare without robust genomics
support.
EHR data is essentially not portable.

Environmental influences on health Patient-reported habits and
exposures

Genomics is routine. Genetic causes and targeted therapies are
discovered for many ‘‘common’’ diseases. Microbiome measures are
routinely included. Genome-aware EHRs make PGx easy and
automatically update rules from central guidelines. New PGx
associations discovered from clinical data.

ACMG59 grows to > 200, variant interpretation improved by huge,
diverse sequenced populations.
Cell-free DNA becomes a mainstay of cancer screening

Genome- and device- enabled. Data can be easily moved between
EHRs and to participant apps.

Geocode-based exposure linkage
Real time monitoring of multiple environmental exposures Precision
nutrition

Wearable sensors Ad hoc use of activity monitors Continuous monitoring of physical activity, sleep, metabolic parameters

Research applications

Population demographics >80% European ancestry >50% non-European ancestry

Routinely available data Surveys of health conditions, lifestyle,
behavior, and diet. GWAS data, lab
assays, structured EHR data, and
geocoded exposure linkages.

Size of cohorts used in analysis Up to 500K, data downloaded and
manually harmonized to sets of

several million
Whole genomes, lab assays, surveys, full EHRs, environmental,
genomic and sensor data. Includes imaging, narrative, geocoded, and
continuous monitoring approaches to clinical care, activity, precision
nutrition, and environment.
>100M using cloud-based federated analyses facilitated by common
standards

Largest genomic studies performed on a trait
>1M (GWAS) >50M (GWAS) >2M (WGS)

Cost of a whole genome $500 $20*
*Sequencing costs have often fallen faster than Moore’s law. Using Moore’s law, sequencing costs would be 1/32 of US $500, or $15.63.

genetic effect sizes (with odds ratios <
1.01), they point to pathways involved in
disease pathogenesis that may have sig
nificant therapeutic implications. Further
more, weighted aggregations of genetic
variants into polygenic risk scores can
achieve similar predictive as rare Mende
lian disease variants (Khera et al., 2018).
Moreover, use of polygenic risk scores
may allow providers to risk-stratify indi

viduals who would otherwise be missed
by traditional screening approaches,
thereby identifying new populations for
treatment or screening.

We anticipate that diverse genetic
causes and targeted therapies will be un
covered for many common diseases,
which could lead to more specific treat
ment and prevention for the patient
and family members. We will likely also
discover that many genetic diseases
occur on a spectrum of severity, pene

trance, and expressivity, guided by the
severity of different genetic variants, life
style, and environmental interactions.
This concept is captured by the scientific
agenda of the International Common Dis
ease Alliance. Classic examples include
different classes of CFTR mutations with
cystic fibrosis or SERPINA1 variants with
alpha-1 antitrypsin deficiency, both of
which can present with different manifes
tations and at varying ages given the
genetic variant, habits (e.g., smoking),



and exposures (e.g., hepatitis virus co
infections).

Routine use of sequencing will
produce valuable datasets for secondary
research,
driving a more comprehensive under
standing of disease penetrance, variant
pathogenicity, and factors influencing
variable expressivity of given genetic var
iants. It will also produce more patients
for whom incidental pathogenic variants
are discovered. The American College of
Medical Genetics and Genomics has
identified 59 genes for which incidental
findings should be considered for patient
return (i.e., the ‘‘ACMG59’’) (Kalia et al.,
2017). These genes include hereditary
cancer syndromes, cardiomyopathies,
and potentially fatal arrhythmias, for
which actions can be taken to mitigate
their risk. Today, about 3% of patients
harbor pathogenic variants, the vast ma
jority of which were previously unknown
to the patient. As genomic knowledge
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increases, the number of actionable
genes and the fraction of the population
affected will significantly increase.

Furthermore, pharmacogenomics can
improve drug efficacy, reduce adverse
events, and reduce cost. In a 2009 inter
view, one of the authors of this article
(F.S.C.) made the comment, ‘‘if every
body’s DNA sequence is already in their
medical record and it is simply a click of
the mouse to find out all the information
you need, then there is going to be a
much lower barrier to beginning to incor
porate that information into drug prescrib
ing’’ (Collins, 2009). Over a decade later,
we still have a long way to go. While
geno mics-guided therapies are
becoming the standard of care for some
cancers, use of germline
pharmacovariants to guide prescribing
has been adopted by only a few US
medical centers. Implementation has
been hindered by a lack of ‘‘geno
mics-enabled’’ electronic health records
(EHRs), the complexity of the genetics
and recommendations, and a lack of
clear evidence. Synthesized evidence
and rec ommendations from the Clinical
Pharma cogenomics Implementation
Consortium, ubiquity of EHRs supporting
complex de cision support, and common
data stan dards offer promise to

accelerate adop tion. Some countries
have substantially reduced drug-induced
Stevens Johnson Syndrome using
genetic testing (White et al., 2018). Even
considering just five drug-genomic
interactions, nearly everyone has a
pharmacovariant that would affect drug
prescribing (Van Driest et al., 2014).

EHRs as a source for phenomic and
genomic research
The key to any longitudinal cohort is
detailed phenotype, exposure, and health
outcome assessment. Many site-based
and national research cohorts now use
EHRs and other health data to provide
up to decades of extant disease and treat
ment information that can be repurposed
for research, and we only see this use ex
panding.

Already EHR-based studies have been
instrumental to some of the largest
genomic studies of clinically relevant find
ings, some of which are exceeding 1
million individuals (Vujkovic et al., 2020).
By providing a systematic collection of
health-related information, EHRs provide
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phenotypes and data and enable novel
study designs often not available in
research collections. For example, one
study demonstrated participants had an
average of more than 190 clinical notes,
14 radiological studies, and more than
700 lab tests over an average of about 8
years of follow up (Robinson et al.,
2018). The power to discover specific en
dophenotypes (e.g., cardiac ejection frac
tion) or emerging phenotypes (e.g.,
COVID-19), rare and specific phenotypes
(e.g., osteonecrosis of the jaw), or to un
derstand specific manifestations of dis
ease (e.g., bronchiectasis) often requires
access to complete EHR data.

EHR data require cleaning and harmo
nization and can reflect clinical and insur
ance biases. Unstructured EHR data,
such as narrative reports or imaging
data, often require advanced methods
like natural language processing or ma
chine learning to be useful on a
population scale. However, all of these
tools are increasingly available and
applicable, providing access to data on a
scale, depth, and detail not feasible with
purely research-collected data.

Clinical EHR data can also be

combined with participant-provided
research data collections to provide a
more complete picture of patient
outcomes. Research co horts such as
the UK Biobank and All of Us have
integrated both data sources.

Further, as clinical sequencing grows,
the number of genotypes derived from
clinical care will rapidly grow to dwarf
those available from research use cases.
Many genomic studies may no longer
need separate research biospecimen
collection to perform large-scale genetic
studies. Collection of research bio
specimens could then shift toward
measuring other biomarkers, cell-free
DNA, exposures, and epigenomics.

Higher variety, higher resolution
phenomics and environmental
exposure data for both clinical and
research use
The next decade will see the continued
growth of research and clinical uses for
different ways to measure clinical pheno
types, exposures, and lifestyle. Data link
ages to health claims, national vital
statistics, and geospatial resources will
become more common as will the use of
wearable devices to measure activity,
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physical measurements, and exposures.
Surveys can then be more focused on el
ements not covered by other methods,
thereby decreasing participant burden.
Activity monitors that take a number of
clinical measurements such as single
lead electrocardiograms and oxygen
saturation are becoming inexpensive and
can be easily shared with providers.
Since the vast majority of a patient’s life
is spent outside the healthcare system,
integration of wearable devices and other
patient-provided information would
augment the EHR and enable greater
tele health capabilities, experienced first
at scale during COVID-19. Moreover, inte
gration of these tools could produce a
shift in which most health-related data is
derived outside of the healthcare setting.

Despite clear evidence of the impact of
nutrition on health, diet is an environ
mental exposure often ignored in much of
clinical practice and many research
studies. When it is assessed, it is often
through episodic and cumbersome sur
veys (research) or perfunctory
summative questions (in most clinical
settings). Re placing dietary assessment



with data link ages to grocery stores,
digital uploads from restaurants,
laboratory and micro biome
assessments, or machine learning
applied to food imaging would provide
more feasible, comprehensive capture of
dietary habits. A future of precision nutri
tion, as a type of ‘‘drug,’’ offers a powerful
new modality for treating and preventing
disease (Rodgers and Collins, 2020).

Privacy, participant trust, and
returning value
The utility of precision medicine is depen
dent on broad participation, and broad
participation of large populations requires
trust, protection of privacy, and a return of
value to the participants. We recognize
that science has not always been trust
worthy or honored all participants equally.
Transparency, authentic engagement
with communities, and including partici
pants within research governance can
improve trust, create participant advo
cates, and ensure a more thoughtful,
culturally sensitive direction. All of Us has
involved participants in all levels of
governance from the beginning and
seeks to return value by giving partici
pants generated research data wherever
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possible, such as genomics results or up
coming COVID-19 serology results.
Participants also need to trust that their
data is secure and private. Highly public
data breaches, fear of reidentification,
and legal concerns about the availability
of certain types of information for factors
such as insurability can make this chal
lenging. Clear and honest
communication with participants is
essential in building trust. Legal
protections for the data and technological
approaches to ensure secure information
systems (such as dei dentifying and
blurring data, controlling access via
blockchain, linking data using
privacy-preserving hashed identifiers,
and analyzing data using homomorphic
encryption) also play a role.

Conclusion
The technologies undergirding precision
medicine are already transforming care.
Transformative molecular treatments
have been developed for rare diseases
like cystic fibrosis and spinal muscular
atrophy. Genomic investigation led to the
development of new drugs for hyper

lipidemia. In this time of COVID-19, sci
ence has been the answer to an existen
tial medical threat. Yet we are reminded
that many of the benefits of medicine’s
advancement have not always been
available to all. Biomedical approaches,
computation algorithms, and the avail
ability of high-resolution data will dramat
ically increase over the next decade.
Implementation of a bold plan to collabo
rate internationally, to engage diverse
populations of participants and scientists,
to deeply measure our populations, to

make clinical and research data broadly
available, and to implement this knowl
edge in clinical practice—in a true
learning healthcare system—will allow us
to achieve the vision of precision medi
cine for all populations.
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