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Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
and more  recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed
interest in virus evolu tion and cross-species transmission. While all known human coronaviruses (HCoVs)
are speculated to have originated  in animals, very little is known about their evolutionary history and
factors that enable some CoVs to co-exist with  humans as low pathogenic and endemic infections
(HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others,  such as SARS-CoV, MERS-CoV
and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the  origins of all
known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolution ary
trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants
of con cern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on
virus transmission,  pathogenicity, and neutralization by natural or vaccine-mediated immunity.
Keywords: SARS-CoV-2, Coronavirus, Evolution, Mutations, Selection, Variants

Background
Coronaviruses (CoVs) can infect humans and animals
to  cause mild to severe disease, including death [1].
CoVs  are divided into four genera: alpha- and
beta-CoVs pre dominantly originate in bats and
infect other mammals,  while gamma- and
delta-CoVs originate in and largely  infect
avian species [2]. CoV infection in animals is gen
erally associated with gastric symptoms [3], such as
acute  diarrhea in young pigs that are infected with
porcine  epidemic diarrhea virus (PEDV) and swine
acute diar rhea syndrome coronavirus (SADS-CoV)
[4, 5]. While  CoVs mainly circulate in animals, such
as pigs, camels,  cats, and bats [6], there have been
at least seven docu mented instances where these
viruses have spilled over  into humans [7]. Tese
events have led to the emergence
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of human coronaviruses (HCoVs) that are low and
high pathogenic. Te origin of the most recently
emerged human coronavirus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is
speculated to be associ
ated with Rhinolophus bats, but the zoonotic transmis
sion pathway remains unknown.

HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV
HKU1 represent endemic and low pathogenic HCoVs,

and are responsible for one-third of common cold
symp toms [8]. High pathogenic HCoVs such as
severe acute  respiratory syndrome coronavirus
(SARS-CoV), Middle  East respiratory syndrome

coronavirus (MERS-CoV),  and SARS-CoV-2 cause or
have caused severe disease  in humans with

case-fatality rates of 10.9%, 34.3%, and  2.1%,
respectively [9–11]. SARS-CoV, MERS-CoV and

SARS-CoV-2 are beta-CoVs [12, 13].
MERS-CoV belongs  to the Merbecovirus
subgenus, while SARS-CoV and  SARS-CoV-2 belong

to the SARS-related coronavirus  (SARSr-CoV)
species within the Sarbecovirus subge

nus [14]. It remains unclear why most HCoVs evolved
to  largely cause minor illness while MERS-CoV

continues  to cause severe disease [15–17]. In this



review, we have
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highlighted the origins of HCoVs and mapped
positively selected for mutations within HCoV proteins
to discuss the evolutionary trajectory of SARS-CoV-2.
We have also discussed emerging mutations within
SARS-CoV-2 and variants of concern (VOC), along
with highlighting the demonstrated or speculated
impact of these mutations on virus transmission,
pathogenicity, and neutralization by natural or
vaccine-mediated immunity.

Origin of human coronaviruses
All known HCoVs are speculated to have an evolution
ary origin in bats or rodents [1, 3, 18] (Fig. 1), with fve
of seven HCoVs originating in bats [3, 19–21]
(Table 1). Bats are speculated to be primordial hosts
for all CoV lineages due to ubiquitous detection of
diverse CoVs and constant CoV population growth,
which contrasts epidemic-like growths observed in
other animals [22]. Although bats and alpacas can

serve as MERS-CoV reservoirs [23, 24],
dromedary camels are the major reservoir host and pri
mary contributor to human infections [25–28] (Fig. 1).
Te full extent of wildlife or intermediate animal reser
voirs of SARS-CoV-2 is currently unknown.

SARS-CoV-2 is believed to have originated in a
seafood market in Wuhan, Hubei Province, China
[29], although limited contact-tracing at the beginning
of the pandemic does not allow for defnitive
characterization of the exact events that led to the frst
human-to-human transmis
sion, including the index patient or initial animal
contact. Nonetheless, it is speculated that the natural
reservoirs of SARS-CoV-2 are Rhinolophus
bats (Table 1) since diverse SARSr-CoVs have been
detected in multiple Rhinolo
phus species [22, 30, 31], including RaTG13 in R.
afnis [32]. RaTG13 is 96.2% identical to
SARS-CoV-2 at the  whole genome level [32].
Moreover, SARS-CoV-2 con tains a polybasic
furin-like cleavage site between S1 and  S2 spike (S)
protein subunits, similar to Rhinolophus CoV



Fig. 1 Speculated animal origins of known human coronaviruses. HCoV species are organized chronologically (top to bottom) by
their speculated  dates of spill over into humans. Intermediate hosts (top to bottom) shown are alpacas, cattle, civet cats, dromedary
camels, pangolins, and  unknown (denoted as a question mark). Genome similarity to humans (A) indicates percentage similarity of
CoV genomes detected in reservoir  species with corresponding human CoV. Genome similarity to humans (B) indicates percentage
similarity of CoV genomes detected in intermediate species with corresponding human CoV. Non-human CoVs that are highly
pathogenic in animals, such as PEDV and SADS-CoV, are not shown here.  Genomic percentage similarities were extracted from
existing primary studies [20, 21, 32, 56, 60, 277–283]
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human coronaviruses from bats

Species Discovery  in humans
Speculated timeline of divergence for human strain

Speculated bat reservoir References

SARS-CoV-2 2019 Human strain likely diverged from most closely related bat virus in 1969 Rhinolophus spp. [32, 294, 295]
SARS-CoV 2003 Human strain likely diverged from bat strain in 1986 Rhinolophus spp. [22, 53, 280, 296–298]
MERS-CoV 2012 Human strain likely diverged from bat strain
before 1990 Taphozous perforates, Pip
istrellus spp., Neoromecia

spp.
[282, 299–305]

HCoV-OC43 1967 Human strain likely diverged from bovine strain in 1890 N/A [276, 306] HCoV-HKU1 2004 No supported
dates of divergence have been established N/A [279]
HCoV-229E 1965 Human strain likely diverged from alpaca
strain before 1960 and from  bat strain between 1686 and 1800

CE
Hipposideros cafer ruber [21, 56, 307]



HCoV-NL63 2004 Human strain likely diverged from bat strain between 1190 and 1449 CE Triaenops afer [20, 308–310]

RmYN02 [33, 34], which shares 93.3% whole genome
nucleotide identity with SARS-CoV-2 [34]. However,
the receptor binding domain (RBD) of SARS-CoV-2 is
only 85% and 61.3% identical to those of RaTG13 and
RmYN02, respectively [34–36]. RaTG13 and
RmYN02 were discovered in bats of China’s Yunnan
province, over 1500 km away from Wuhan [34, 35];
however, this does not preclude the possibility of
virus spill over as bats can fy long distances. Virus
transmission and transport by susceptible
intermediate reservoirs or humans is also  possible.

Phylogenetic analyses have identifed a possible
recom bination-mediated origin for SARS-CoV-2
[37–39].  Neutralizing antibodies to SARS-CoV and
SARS-CoV-2  have been detected in Malayan
pangolins (Manis javan ica), suggesting
that SARSr-CoVs have been circulating  in pangolins
since 2003 [40]. Recombination of CoVs  within
Malayan pangolins has been suggested given the
97.4% amino acid similarity within the RBDs of
pangolin  SARSr-CoVs and SARS-CoV-2 [35, 41],
including con servation of all critical residues required
for successful  human ACE2 (hACE2)-mediated
cellular entry [35, 39, 41, 42] and the detection of
pangolin SARSr-CoVs that  bind to hACE2 [43].
Additionally, bats and pangolins  may share
underground caves [44], facilitating ecological  contact
in high density areas. However, the lack of robust
evidence of direct SARS-CoV-2 emergence from a
pan golin CoV precursor [45], along with the reported
high  pathogenicity of SARSr-CoVs in infected
pangolins [41, 42, 45] makes it unlikely that pangolins
are intermediate  reservoirs of SARSr-CoVs.

Te nucleotide percentage similarity of CoVs
detected in reservoir species is generally lower than
CoVs detected in intermediate species. Adaptive
evolution of CoVs in intermediate species facilitates
successful spill over into humans (Fig. 1). Since

SARS-CoV-2 is more closely related to bat
SARSr-CoVs than to pangolin
SARSr-CoVs (Fig. 1), it seems unlikely that pangolins
are intermediate hosts, unless we haven’t yet
detected  the full range of SARSr-CoVs in pangolins.
It is uncer tain whether an unknown intermediate host
provided  an opportunistic amplifying role or a stable
reservoir
for the zoonotic transmission of SARS-CoV-2. While
direct human infection with bat SARSr-CoVs  has not
been reported [46], it is possible that the major ity of
adaptive evolution of SARSr-CoVs occurs in bats,
prior to spill over into humans [47]. Some notable
adaptations include carrying the lowest level of CpG
dinucleotides among known beta-CoV
genomes [48],  similar to a mechanism of escaping
innate immunity  observed in camel MERS-related
CoVs strains [49, 50].  Te relatively few SARSr-CoVs
detected in the Hubei  Province [35] are
phylogenetically distant from SARS CoV-2 [51].
Indeed, if SARS-CoV-2 did transmit from  animals to
humans, further sampling in Hubei Prov ince may
identify more closely related SARSr-CoVs  in archived
animal specimens. Investigating the pos sibility of an
infected person travelling to Wuhan and  unwittingly
spreading the virus will be more difcult in  the absence
of archived samples and records of travel  history.
Despite the abundance of SARSr-CoVs and beta

CoVs in bat species [52, 53], it is likely that
additional  reservoirs and intermediate hosts remain

undetected  [54]. Pigs, alpacas, and dromedary
camels also main tain a variety of CoVs with the

potential to transmit  to humans [3, 12, 20, 55–57].
Independent insertions  within RBDs of SARS-CoV,
MERS-CoV, and SARS CoV-2 suggest convergent

evolution, which will likely  lead to emergence of more
pathogenic HCoVs [58].  Further sampling of bats,

pangolins, and other spe cies that share an ecological
niche with bats may help  piece together the puzzle

surrounding the spill over of
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SARS-CoV-2 into humans [59] and also help discover
other CoVs with potential to infect humans. Aside from
consistent spill over of MERS-CoV from  camels [60],
HCoVs have emerged through limited spill  over
events, followed by human-to-human transmission  [3,
61]. While challenging to predict, future spill over
events are likely, due to the long history of CoV host
shift ing [62–65]. Anthropogenic factors such as
urbanization  and deforestation increase habitat
overlap of humans  and animals, providing increased
zoonotic transmission  opportunities [57, 66]. Areas of

high contact between  humans, wildlife, and
domesticated animals, such as live  animal wet
markets provide opportunity for viral recom bination
and adaptation to a broader range of animal  species
prior to transmission to humans [57]. Identify ing
existing CoV diversity in such areas will enhance our
understanding of ecological opportunities for zoonosis
and will help us better predict and prevent the
emergence  of future HCoVs.

Evolution of SARS‑CoV‑2 and its variants
Co-evolution of CoVs with their hosts is driven by
genetic  diversity that is selected through evolutionary
pressures.  CoV genetic diversity is made possible by
a large genome  (26.4–31.7 kb) [67], high mutation



rate due to a low fdel ity viral polymerase (~ 10–4

substitutions per site per  year) [68, 69], and high
recombination frequency (up to  25% for the entire
genome in  vivo) [70, 71]. Mutations  that confer
greater ftness are selected for, leading to anti genic
drift. Ratios of the rates of non-synonymous/syn
onymous mutations (dN/dS) greater than one, less
than  one and equal to one indicate positive selection,
negative  (purifying) selection and neutral evolution,
respectively  [72]. SARS-CoV-2 genomes are
currently under purify ing selection [73, 74]. Despite
observing little viral diver sity at the beginning of the
COVID-19 pandemic [75, 76], positive selection with
presumed advantages such as  increased
transmission rates has now been documented
[77–79] (Fig. 2, Table 2). However, functional
characteri zation of these mutations remains
under-investigated.

Antigenic drift is most frequently observed in viral
surface proteins that are highly exposed to selection
pressures of the immune system, such as neutralizing
antibodies [80]. Indeed, CoV spike genes, particularly
the S1 and RBD coding regions, have the highest
detected non-synonymous mutation rates [81, 82], a
trend observed across the majority of HCoVs (Fig. 2).
For low pathogenic and endemic HCoVs, multiple
positively selected for residues and polymorphic sites
are found in the N-terminal domain (NTD) of S
[83–88]. A notable exception is HCoV-HKU1, for
which there is a shortage of sequencing data outside
of the hemagglutinin ester ase (HE) gene. Emerging
data suggest that positively
selected for and homoplastic sites have been
observed  within the SARS-CoV-2 NTD as well [78,
89–91]. Given  the observations with other HCoVs
(Fig. 2) and the detec tion of neutralizing epitopes
within the SARS-CoV-2  NTD [91, 92], we speculate
that with continued circula tion, vaccination and
convalescent sera therapy, further  positively selected
for mutations in the NTD are likely to  occur. Further
retrospective research on the evolution of  endemic
HCoVs may help predict the likely evolutionary
trajectory of SARS-CoV-2.

CoV genomic mutations give rise to virus variants,
and closely related variants are grouped into clades.

SARS CoV-2 variants have been clustered into nine
clades: L, V, S, G, GH, GR, GV, GRY and O [93, 94]
(Table 3), named after their most representative
mutations [95]. Clade L dominated the beginning of
the pandemic [38], prior to the appearances of clade
S and the less defned clade O in early January, 2020
[73, 93, 96]. Clades V and G appeared in
mid-January, followed by clades GH and GR at the
end of February, clade GV at the end of June, and
clade GRY in September, 2020 [94, 97, 98]. Clades L
and V are likely extinct, while clades G, GH, GR, and
GRY comprise the majority of global SARS-CoV-2
sequences currently [97, 98]. Clade S has also been
declining since the emer gence of clade G [93].
Following rapid dissemination of clade G and its
derivatives, such as B.1.1.7, B.1.351, P.1, and
B.1.617.2 variants (Table 5), we may see the rise of
other variants, selected by mounting population-level
immunity and other yet unidentifed factors [89,
99–101], highlighting the need for international
genome surveil lance eforts and global data sharing
via the established  GISAID resource [102].

Clade G is characterized in part by the single nucleo
tide polymorphism (SNP) A23403G within subdomain
2  of the S1 gene, resulting in amino acid mutation
D614G  [103, 104] (Fig. 2, Table 2). D614G is now
detected glob ally in B.1.1.7, B,1,351, P.1, B.1.617.2
and other variants  [97, 104, 105] and increases the
infectivity of SARS CoV-2 by increasing respiratory
viral load [106, 107],  possibly due to increased S
openness [108, 109] or cleav ability [110], causing this
mutation to become dominant  upon emergence [93,
111, 112]. Tere is also an epide miological correlation
between D614G and anosmia (loss  of smell) [109],
potentially due to greater viral loads in  the olfactory
epithelium. Preliminary evidence suggests  that
D614G increases viral susceptibility to neutralization
[113], with uncertain impacts on disease severity [104,
114, 115].

D614G is usually accompanied by three other muta
tions which represent clade G [104, 116, 117]
(Table 3).  Of these mutations, P323L in the

RNA-dependent RNA  polymerase (RdRp), encoded
by Nsp12 (Fig. 2, Table 2),  is particularly
interesting as CoV RdRp tends to be highly
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Fig. 2 Mutations identifed in human coronaviruses. Red dots within the genomes correspond to specifc amino acid residues that have
been  strongly positively selected for such that a specifc mutation has become dominant in the region where it emerged [74, 78,
83–91, 94–96, 99–101, 104, 111, 116, 117, 121, 123–125, 129, 131, 132, 135, 138–140, 146, 151–154, 158, 162, 278, 284–293].
Genomic regions highlighted by red bars  correspond to deletions that have been selected for, while purple bars correspond to regions
with signifcant polymorphisms within a CoV species. Beta-CoV Lineage B (Sarbecovirus) is represented within the
blue shaded area, beta-CoV Lineage C (Merbecovirus) is represented within the yellow
shaded area, beta-CoV Lineage A (Embecovirus) is represented within the red shaded area, and
alpha-CoVs are represented within the green shaded area. Genome length in kilobases (kb) is noted on top. See Table 2
for more details
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Table 2 Selection sites across various human coronaviruses
Protein SARS-CoV-2 SARS-CoV MERS-CoV HCoV-OC43 HCoV-HKU1 HCoV-229E HCoV-NL63

Nsp1



Nsp2 aa85

Nsp3 nt8441 R911C,
aa981,
aa1099,
aa1255,
aa1375,
aa2119

~nt4000

Nsp4

Nsp5 nt10384,
nt10793

Nsp6 L37F,
nt11083

nt11631

Nsp7

Nsp8 nt12257

Nsp9 nt12814

Nsp10

Nsp11 nt13402

Nsp12 P323L

Nsp13 nt16887 nt16177,
E466D

aa5551

Nsp14 aa6030

Nsp15

Nsp16

ORF2

HE T114N,
T115R,
R177P,
E178Q,
F181S,
F247L,
H250Y

169-176del,
181-182del,
188-194del,
215del,
221-
223del

S1 nt21575,
S13I,
H69del,
V70del,
Y144del,
W152L,
A222V,
D253G,
K417N/T,
N439K,
N440K,
L452R,
S477N,
T478K,
E484K/Q,
F490S,
N501Y,
D614G,
Q677P/H,
P681H/R

D77G,
L239S,
T244I,
R311G,
F360S,
L472P,
D480G,
T487S,
nt22797

D510G,
I529T,
nt23722

N33D,
K90L,
T93K,
D120H,
K184N,
L195S,
Y521H

Y26H,
Y35H,
L88S,
D111N,
L113S,
L121I,
T223N,
D228del,
S229V,
D248A,
V288A/M/
E,
aa308-325,
K314V/P,
G321R,
D324V,
aa352-359,
V353del,
Y354del,
Y404L,
aa404-
408,
D430K,

V444N,
K488N

aa1-200,
50I,
120S, 295A,
310V,
370V,
435K,
E471D,
I507L,
E572A



S2 A701V, F888L D778Y Q1020R/H,
G1224S,
L1267S

R642M,
N714K,
V765A,
T871I,
I937L

ORF3 aa85, aa86

ORF3a Q57H,
G251V

ORF3b

ORF4

ORF4a aa102

ORF4b

ORF5

ORF5a

E

M nt26428

ORF6

ORF7a

ORF7b R17C

ORF8 Q27stop,
L84S

nt27969-
27897del

ORF8b

N R203K,
G204R

aa178, aa300

ORF9b

ORF9c

ORF10

Reference
s

(74,78,94,9
9,10
0,121,123,1
29,1
35,150,158,
196,
205,216–
218,227,229
,231 ,311)

(74,138,15
3,28
6,312–316
)

(74,131,152
,220
,287–291,3
17)

(84,278) (292)
(83,151,293
,318 )

(85–88)
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Table 2 (continued)
This table illustrates positively selected for residues across multiple human coronaviruses. Shaded boxes represent proteins not encoded by the specifc
CoV species.  Text in bold highlight mutations and deletions that were positively selected for and showed population-level expansion, while non-bolded text
represents highly  polymorphic sites. Sites are indicated as nucleotide (nt) position or amino acid (aa) position. Empty cells in the table represent lack of
evidence for positive selection or  lack of publications on positive selection within these regions



Table 3 Characteristic mutations detected in circulating
SARS CoV-2 clades

Clade Characteristic mutations References L Reference

Genome NC_045512.2 [94, 319]

rates. Moreover, P323L downregulates the associa
tion of Nsp12 with the Nsp8 primase subunit (Table 4),
reducing polymerase activity and viral replication
[122].  Decreased replication could decrease
symptomology,  leading to reduced COVID-19
detection and greater

V Nsp6: L37F
ORF3a: G251V
S Nsp4: S76S
ORF8: L84S
G 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G
GH 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G
ORF3a: Q57H
GR 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G
N: R203K
N: G204R
GV 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: A222V
S: D614G
GRY 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: H69del
S: V70del
S: Y144del
S: N501Y
S: D614G
N: R203K
N: G204R
O Variants without mutations characteris tic of
other clades
[95, 123, 129, 284] [96, 285]

[104, 116, 117] [121, 146]

[123]

[97, 150]

[89, 146]

[93, 94]
population-level spread. It is
important to characterize  the
cumulative efect of all mutations, as
any reduction  in transmission due to
P323L could be compensated for  by
the co-existing D614G mutation.
Multiple factors may  contribute to
the success of clade G and its
derivatives via  rapid spread with low
detection in human populations
[104].
Positively selected for residues
within SARS-CoV-2  Nsp6 [74,

123–126] are intriguing since Nsp6 is
rela tively conserved in other
coronaviruses [126] (Fig. 2,  Table 
2). SARS-CoV-2 Nsp6 inhibits IFN-1
responses  [127] and may reduce
delivery of viral factors to host lys
osomes similar to its SARS-CoV
ortholog [128] (Table 4).  Te Nsp6
L37F mutation may impair Nsp6
function  [129], decreasing viral
replication and causing increased
asymptomatic infections [130]. A
similar homoplasy  occurs in
MERS-CoV Nsp6 [74, 131] (Fig. 2),
although  the outcome of this
mutation is unknown. Te associated
clade V mutation (Table 3) in ORF3a
(G251V) reduces  viral replication
through decreased SARS-CoV-2
intravi ral ORF3a-S and
ORF3a-membrane protein (M)
binding  afnity [132]. Nsp6 (L37F)
and ORF3a (G251V) muta tions
were likely selected to decrease
pathogenicity and  disease severity.
A separate positively selected
ORF3a  mutation (Q57H) [111]
characteristic of clade GH vari ants
(Table 3) is speculated to increase
ORF3a-S and  ORF3a-M binding
afnity, promoting virus replication
[132]. Te ORF3a viroporin is
essential for SARS-CoV-2
pathogenesis [133] and limits
apoptosis in infected cells

Characteristic mutations for SARS-CoV-2 clades at the amino acid or
nucleotide  (*) levels

conserved by purifying selection given its critical role
in viral genome replication [118, 119] (Table 4). P323
falls outside of the RdRp catalytic site and within a
relatively uncharacterized interface domain that may
interact with proteins that regulate viral polymerase
function [120]. Te correlation of this mutation with
increased point mutations [121] elsewhere in the
genome raises an intriguing hypothesis that P323L
diminishes RdRp proofreading ability, leading to
increased mutation
relative to its SARS-CoV ortholog [134], potentially

con tributing to less severe disease outcomes.
Another mutation of interest (L84S) lies within ORF8

[123, 124, 135], a protein implicated in evasion of host
immune responses [136, 137] (Table 4). ORF8 was
under strong directional selection at the beginning of
both SARS-CoV-2 [124] and SARS-CoV outbreaks
[138], supporting the theory that it facilitates zoonotic
trans
mission and adaptation in alternate hosts [139, 140].
However, the over-representation of ORF8 deletions
in SARS-CoV with no apparent efect on viral survival
[138] suggests that ORF8 may be dispensable in
humans [139], and L84S mutations may not be
signifcant. While
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Table 4 Putative functions of SARS-CoV-2 proteins

Gene Protein Putative function References

Nsp1 Leader protein/host translation inhibitor Inhibits translation of host mRNAs and promotes expression of viral
[320]

genes
Nsp2 Non-structural protein 2 Modulates host cell survival signalling pathways [321]
Nsp3 Papain-like protease Proteolytic cleavage of polyprotein to
generate Nsps 1–3, and inhibi tion of host IFN responses
Nsp4 Non-structural protein 4 Interacts with Nsp3 and host
proteins to induce cytoplasmic  autophagosomes for viral
replication
Nsp5 Chymotrypsin-like protease Proteolytic cleavage of
polyprotein to generate Nsps 4–16 and media tion of Nsp
maturation
Nsp6 Non-structural protein 6 Interferes with delivery of viral

factors to host lysosomes and inhibits  IFN-1 responses
Nsp7 Primase complex Forms a complex with Nsp8 which
interacts with RdRp (Nsp12) to  transcribe viral genome
Nsp8 Primase complex Forms a complex with Nsp7 which
interacts with RdRp (Nsp12) to  transcribe viral genome
[322, 323] [324, 325] [326, 327] [127, 128] [120]

[120]

Nsp9 ssRNA-binding protein Binds to viral ssRNA and promotes replication [328]
Nsp10 Non-structural protein 10 Interacts with 3′–5′ exoribonuclease (Nsp14) and 2′ O-ribose methyl

[328]
transferase (Nsp16) and promotes methylation of viral mRNA caps

Nsp11 Non-structural protein 11 Released from cleavage of pp1a and forms N-terminal sequence of
[328]

Nsp12 in pp1ab frameshift product. No known function
Nsp12 RNA-dependent RNA polymerase (RdRp) Replicates and transcribes viral genome [326] Nsp13 Helicase Unwinds dsRNA
and dsDNA in viral replication [326, 329]
Nsp14 3′–5′ exoribonuclease/N7-guanine methyltransferase Proofreading during RNA replication (exoribonuclease) and viral mRNA

[330]
capping (methyltransferase). Interacts with Nsp10

Nsp15 Nidoviral uridylate-specifc endoribonuclease RNA processing and inhibition of host IFN responses [331] Nsp16 2′
O-ribose methyltransferase Activated by Nsp10 for methylation of viral mRNA caps [332]
S Spike glycoprotein Cleaved into S1 and S2 subunits. S1 binds
host receptor (ACE2) while  S2 mediates viral and host
membrane fusion
ORF3a Orf3a viroporin Activates NF-kB and NLRP3
infammasome to contribute to cytokine  storm. Promotes viral

release and may induce necrotic cell death
[333]

[334–336]

ORF3b Accessory protein ORF3b IFN-1 antagonist [337]
E Envelope protein A viroporin involved in viral assembly,
budding, and pathogenesis.  Forms CoV envelope
M Membrane protein Forms viral membrane and induces N and S
localization to the ER Golgi-Intermediate compartment for virion

assembly and budding
[338, 339] [340]

ORF6 Accessory protein ORF6 IFN-1 antagonist [144]
ORF7a Accessory protein ORF7a SARS-CoV ortholog inhibits bone marrow stromal antigen 2 mediated

[341]
tethering of virions to host plasma membrane

ORF7b Accessory protein ORF7b SARS-CoV ortholog attenuates viral replication [342]
ORF8 Accessory protein ORF8 Inhibits IFN-1 activity and
downregulates MHC-1 expression to evade  host immunity
N Nucleocapsid Involved in immune evasion through IFN-1
antagonism, nucleocapsid  formation, viral RNA replication, and

virion assembly
[136, 137, 144] [144, 145]

ORF9b Accessory protein ORF9b Suppresses IFN-1 responses through inhibition of TOM70 [343]
ORF9c Accessory protein ORF9c Interferes with IFN signalling, antigen presentation, and complement

[344]
signalling. Induces IL-6 signalling

ORF10 Accessory protein ORF10 Interacts with a Cullin 2 RING E3 ligase complex to potentially modu
[345]

late ubiquitination

Findings are based on studies with SARS-CoV-2 proteins or SARS-CoV orthologs



L84S may be important in SARS-CoV-2 virulence and
pathogenesis given ORF8’s role in attenuation of host
immunity (Table 4), the continued decline of L84S

representation among global SARS-CoV-2 sequences
[93] suggests otherwise.

Mutations RG203KR within SARS-CoV-2 nucleopro

tein (N) have become dominant and characteristic of
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clade GR [123]. RG203KR alters N protein
morphology, resulting in increased intraviral protein
binding afn ity [132]. N-M interactions are necessary
for CoV viral assembly [141, 142], while N-envelope
(E) interactions potentially increase production of
virus-like particles [143]. Terefore, increased intraviral
N protein binding afnities could contribute to
increased viral replication. RG203KR may also confer
immune evasion properties to SARS-CoV-2
considering the rapid expansion of clade GR and the
role of N protein in antagonizing human anti
viral immune responses [144, 145] (Table 4). Te global
prevalence of variant B.1.1.7 has generated clade
GRY  from clade GR [146].

Clade GV is associated with the European variant
20A. EU1 containing spike NTD mutation A222V [105,
147].  A222 is located within a speculated B
lymphocyte epitope  [148] that may impact
neutralization by human antibod ies, consistent with
observed SARS-CoV-2 re-infection  with a clade GV
variant [149]. Te rise in prevalence of  variant
20A.EU1 and clade GV is most likely associated  with
the relaxing of travel-associated restrictions across
Europe near the end of the summer of 2020 consider
ing the rapid decline in prevalence of global clade GV
sequences in 2021 [97, 150].

Ongoing SARS‑CoV‑2 evolution
and the rise  of variants of concern
An aforementioned trend across HCoVs is positively
selected residues within RBD [84, 85, 88, 138, 139,
151– 154] (Fig. 2, Table 2), which facilitates
interactions with

Table 5 SARS-CoV-2 variants of concern (as of July 22,
2021)

host cellular proteins, providing a crucial target for the
host immune response [155]. Accordingly,
SARS-CoV-2 RBD is rapidly evolving, leading to
novel variants [156, 157] (Fig. 2, Table 2).
SARS-CoV-2 variants associated with greater
transmissibility, altered virulence, or the ability to
escape natural infection- and vaccine-mediated
immunity or current diagnostic tests are called
Variants  of Concern (VOC; Table 5).

Early data suggest that RBD mutation N501Y
emerged  recurrently in multiple regions due to
increased trans missibility, and is associated with
multiple VOCs [89, 99, 100, 158] (Table 5).
SARS-CoV-2 N501 serves as one of  six critical S
residues required for binding to ACE2 [159]  and
N501Y increases viral infectivity through greater
S-hACE2 binding afnity, likely due to stronger inter
actions with ACE2 residues Y41 and K353 [160].
Other  critical residues within the SARS-CoV-2 RBD
(L455,  F486, Q493, S494, Y505) [73] should be
closely moni tored as mutations may increase
SARS-CoV-2 transmis sion in humans and facilitate
zooanthroponotic transfer  to other species.

Early studies of the highly transmissible B.1.1.7
variant  [77, 161] originating in the United Kingdom

described  17 co-occurring non-synonymous
mutations or dele tions [89], which are more than

expected since the muta tion rate of SARS-CoV-2 is
estimated to be around  2.4× 10–3 per site per year

[135]. In addition to N501Y,  spike 69-70del, Y144del,
and P681H mutations are specu lated to be of

functional signifcance [78, 162] (Table 5).  Spike NTD
69-70del variants have shown signifcant

Variant Mutations of interest Clade Date of emergence First
detection in  human population
Country of likely origin References

B.1.1.7 (VOC2020  12/01, 501.V1,  Alpha)

S: 69-70del S: Y144del S: N501Y S:
D614G S: P681H

GRY September, 2020 December, 2020
United Kingdom [89, 99, 190]

B.1.351 (501.V2, Beta) S: K417N S: E484K
S: N501Y
S: D614G
S: A701V
P.1 (501.V3, Gamma) S: K417T S: E484K
S: N501Y
S: D614G

B.1.617.2 (Delta) S: L452R S: T478K
S: D614G
S: P681R
GH October, 2020 December, 2020 South Africa [100, 101, 190]



GR July, 2020 January, 2021 Brazil [101, 190, 194] G October,

2020 December, 2020 India [196, 201, 202, 346]

Variant names are based on Rambaut et al.’s classifcation [347]. Other commonly used names are mentioned in brackets. Mutations mentioned here are
non synonymous mutations that are speculated to confer some functional signifcance. These variants contain other mutations that may also contribute to
viral  advantages [89, 99–101]. Updated information about SARS-CoV-2 VOCs can be accessed through the GISAID resource (https://www.gisaid.org).
Dates of emergence  are based on retrospective analyses. S, spike. del, deletion
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transmission expansion, with speculated increased
resist ance to antibody-mediated neutralization [92]
likely  associated with sequestration of a protruding
spike  loop [78]. Y144del confers antibody resistance
due to  loss of a negative surface charge [163, 164].
Spike P681  is located in a known CoV mutational
hotspot [83, 101]  directly adjacent to the
SARS-CoV-2 S1/S2 furin cleav age site (aa 681–684)
[89, 165, 166] which promotes virus  entry into host
cells [167]; mutation in this region may  increase
cleavability and membrane fusion to enhance
infectivity. P681 is also within an antigenic epitope
recog nized by B and T lymphocytes, implicating host
immune  response alterations [168]. P681H may
therefore repre sent adaptive evolution to evade host
immunity, although  confrmatory studies are required.
Another speculated  B.1.1.7 mutation at ORF8
(Q27stop) causes early protein  termination [89].
Truncated ORF8 has been associated  with milder
symptoms [169], although increased mor tality is also
associated with the B.1.1.7 variant [79, 170].
Emerging mutations in B.1.1.7 must be monitored and
investigated, such as the sub-lineage VOC202102/02
that  contains the RBD mutation E484K, which is
associated  with antibody resistance [171–173].

Another variant containing N501Y is B.1.351, which
was frst detected in South Africa in December, 2020
[100], but likely originated in October, 2020 [101]. Tis
variant contains eight non-synonymous mutations in
S, including three within the RBD (K417N, E484K,
N501Y) and three in the NTD that may contribute to
increased transmissibility [100, 101]. Both N501Y and
E484K are located within the receptor binding motif
(RBM) of the RBD. E484 interacts with residue K31
on hACE2 [174], one of two critical hACE2
RBD-interacting residues [159, 175], suggesting that
E484K may afect the binding afnity of SARS-CoV-2
with hACE2. However, prelimi nary studies
demonstrate contradictory binding afnity observations
[176, 177]; further studies are required. In addition,
E484K confers some resistance to antibody mediated
neutralization of SARS-CoV-2 in vitro [91, 154,
178–181], consistent with the observation that E484 is
an important recognition site for neutralizing antibod

ies [181, 182], and raising concerns about E484K
being  an immune escape mutation appearing in
multiple inde pendent SARS-CoV-2 lineages [172,
183–186]. Similarly,  spike K417 is within a
neutralizing antibody epitope  [100]. Preliminary
evidence suggests K417N reduces rec ognition by
human antibodies [187]. K417N may impact
RBD-hACE2 binding afnity and stabilize E484K,
though
these efects remain uncertain [91, 177, 187, 188].
Mutations within the RBD (K417T, E484K, N501Y)
have also been observed in the P.1 variant (Table 5)
that  likely originated in Brazil and has since spread to
other  countries [101, 189–191]. In contrast, the P.2
variant only
contains E484K, likely acquired through convergent
evo lution with P.1 [186, 192]. Little is known about the
P.1 variant, but based on emerging data [193], we
speculate that the RBD mutations likely afect
antibody-mediated neutralization and contribute to
increased transmission as observed with B.1.351.
Mutations shared between the B.1.1.7, B.1.351, and
P.1 variants are speculated to have arisen
independently, indicating convergent evolution [194]
(Table 5). Tese variants also share Nsp6 3675-
3677del, with unknown functional signifcance [194,
195].

VOC B.1.617.2 was frst identifed in India in late
2020 and contains positively selected for mutations
within the spike protein, namely, L452R, T478K, and
P681R, along with the D614G mutation [196] (Table 
5). Mutation of the uncharged and hydrophobic
leucine (L) residue into the positively charged and
hydrophilic arginine (R) resi
due at spike position 452 allows for an increased
electro static interaction with negatively charged
ACE2 residues E35, E37, and D38, likely leading to
the observed increase in S-hACE2 complex stability,
viral infectivity, and virus replication [196, 197].
Furthermore, abolition of the hydrophobic surface
patch through the L452R mutation led to reduced
antibody-mediated neutralization and cellular immune
recognition [196–198]. Spike muta
tion T478K has also been shown to increase
electrostatic interactions in the S-hACE2 complex
and may increase binding afnity similar to the S477N
mutation [199]. Te mutation T478K is within a
neutralizing epitope close to the immune evasion



mutation E484K/Q that is present in multiple
SARS-CoV-2 variants, including the ances
tral B.1.617 lineage and current sub-lineages
B.1.617.1  and B.1.617.2 [181, 200, 201]. T478K in
combination with  L452R may contribute to increased
resistance to neutrali zation by monoclonal antibodies,
convalescent sera, and  vaccinated sera [201, 202].
B.1.617.2 has increased repli cation efciency in
human airway systems relative to the  B.1.1.7 lineage
due to enhanced spike cleavability, which  is likely
augmented by the P681R mutation [201, 203].  P681R
is known to increase cell-to-cell fusion in the res
piratory tract, potentially increasing transmissibility
and  pathogenicity in infected individuals [201, 203].

B.1.617.2  may thus represent a VOC with similar
resistance to  antibody neutralization as B.1.351 and
transmissibil ity beyond B.1.1.7 [200]. Recently
discovered B.1.617.2  sequences containing the
K417N mutation (AY.1/AY.2  lineages) must be
monitored for altered antibody resist ance and
increased transmissibility [204].

Circulating variants containing an N439K mutation
(e.g. B.1.141 and B.1.258) also show some degree of

neu tralization evasion [91, 198, 205], raising
speculations  about SARS-CoV-2 variants escaping

vaccine-mediated  immunity. Emerging data suggest
that antibodies elicited
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by mRNA vaccines (BNT162b2 and mRNA-1273)
have  20% and 16.7% reduced neutralization capacity,
respec tively, against the B.1.1.7 variant [206, 207]
and 67% and  84% reduced neutralization capacity,
respectively, against  the B.1.351 variant [208, 209].
Neutralization capacity of  sera from BNT162b2 and
mRNA-1273 vaccinated indi viduals have 87% and
52% reduced neutralization capac ity, respectively,
against the B.1.617.2 variant [200, 201, 210]. Te
emergence of B.1.1.7 sub-lineages containing  the
E484K RBD mutation (e.g. VOC202102/02) pose
additional challenges for vaccine-mediated immunity
[171, 173, 183]. While complete vaccine failure is
unlikely  [206, 207, 211–215], immune escape variants
may create  a need to update current SARS-CoV-2
vaccines. Moni toring the emergence of novel
SARS-CoV-2 variants  is especially important as
vaccine-mediated immunity  provides stronger
selective pressure for SARS-CoV-2  evolution.

Other variants of interest
Multiple emerging SARS-CoV-2 lineages are not con
sidered VOCs but are still of interest and may become
VOCs in the future. One variant, B.1.525, was frst
detected in December, 2020, in the United Kingdom
and Nigeria and has since spread internationally.
B.1.525 contains spike mutations 69-70del, E484K,
Q677H, and F888L. Q677P/H has emerged in
disparate variants and may afect spike cleavability
similar to P681H [158, 216–
218]. F888L lies between the fusion peptide and
heptad repeat region of the S2 subunit [219] and may
impact host cellular entry, similar to the impact of
heptad repeat  mutations in MERS-CoV [139, 220].

Variant B.1.526 from New York contains spike muta
tions D253G, D614G, and A701V, along with either
E484K or S477N, creating two major B.1.526 sub-line
ages. NTD mutation D253G reduces
antibody-mediated  neutralization [163]. A701V,
shared by variant B.1.351  [100], is in the S2 subunit

adjacent to the furin cleav age site [219] and may
impact SARS-CoV-2 cleavability  and infectivity.
S477N, also found in variant 20A.EU2,  increases
binding to hACE2 [221, 222] and reduces anti
body-mediated neutralization [178, 223], likely due to
its  position within a neutralizing epitope [224]. D614G
and  E484K are shared with multiple other variants
(Table 5)  and likely play a role in B.1.526 expansion.

P681H found in variant B.1.1.207 from Nigeria [162]
may enhance infectivity and modulate host immunity
as speculated for B.1.1.7. Similar efects are expected
for P681R in variant A.23.1 that emerged in Uganda
[183, 225]. Te UK A.23.1 sub-lineage VUI-202102/01
also contains immune escape mutation E484K [171,
183]. Preliminary data show increased ACE2 binding
afnity and reduced antibody-mediated neutralization
for the
P.3 variant from Brazil, which contains the spike muta
tions E484K, N501Y, and P681H [164]. Data also
suggest  increased ACE2 binding afnity and reduced
neutraliza tion profle for the B.1.620 variant from
Central Africa,  which contains spike mutations
E484K, S477N, D614G,  and P681H [226]. Other
notable variants include N440K  variants from India
[227] that have increased transmis sibility, and the R.1
variant from Japan which contains  potential immune
escape mutations W152L and E484K  [228].

B.1.427/B.1.429 are two emerging lineages that
origi nated in California in May 2020 [229], however,
circulat ing B.1.427/B.1.429 variants are now being
replaced by  more transmissible variants, such as
B.1.1.7 and B.1.617.2  [97, 230]. B.1.427/B.1.429
contains multiple positively  selected for mutations
within the S protein, such as S13I,  W152C, and
L452R, all of which contribute to some  degree of
resistance to antibody-mediated neutraliza tion [229].
L452R has convergently evolved in the B.1.617
lineage and contributed to enhanced SARS-CoV-2
infec tivity [196–198] (Table 5). Spike mutation L452Q
was  detected in the recently emerged C.37 lineage
from Peru  and is expected to have similar impacts on
virus infectiv ity as the L452R mutation [231]. C.37
also shares Nsp6  3675-3677del with B.1.1.7,
B.1.351. and P.1 variants [231],  and contains the



spike RBD mutation F490S that has  been associated
with reduced antibody-mediated neu tralization [91,
178]. Tese variants need to be monitored  for
transmission expansion and convergent evolution.

Multiple factors will determine
the evolutionary  trajectory of SARS‑CoV‑2
and the COVID‑19  pandemic
Te future of SARS-CoV-2 and COVID-19 remains
uncertain. Many virological, immunological, and
social factors will infuence the epidemiological trajec
tory of this virus. One particularly intriguing question
that remains unanswered is whether SARS-CoV-2 will
become endemic in the human population, like HCoVs
NL63, OC43, HKU1, and 229E [232–234].

Currently, endemic HCoVs cause seasonal outbreaks
[235], with increased circulation observed in the win

ter in temperate regions [232]. Cold temperatures are
favourable for enveloped viruses [236], as lower tem

peratures enhance lipid ordering of the viral envelope,
allowing the virus to remain protected outside the host

for longer periods of time [237, 238]. Low
temperatures  also enhance aerosol transmission of

respiratory viruses  by allowing virions to remain
suspended in the air for a  longer duration [239].

Furthermore, cold and dry envi ronments can have
immunosuppressive efects on a  potential host, further

increasing the chances of infection  [240–242].
Evidence suggests decreased transmission of

Singh et al. Virol J (2021) 18:166 Page 12 of 21

SARS-CoV-2 in warmer climates [243–246], likely due
to  degeneration of viral structural stability with
increasing  temperatures [247]. Decreased
transmission of SARS CoV-2 was not observed during
the summer of 2020  [11, 248] likely because of the
sheer number of cases  and an immunologically naïve
population. For seasonal ity to have an observable
impact on SARS-CoV-2 trans mission, the basic
reproduction number (R0) must drop  from its current
estimate of around 2.5 to less than 1  [249]. In theory,

SARS-CoV-2 R0
should drop substan tially when

population herd immunity is reached through  natural
infection and vaccination, allowing for meteoro logical
factors to infuence viral transmission, leading to
seasonal fuctuations. Other intervention mechanisms
such as efective social distancing, quarantine, and
con tact-tracing will contribute towards reducing the
R0 for  SARS-CoV-2 [250, 251].

Multiple studies have demonstrated short-lasting
immunity to endemic HCoVs, with waning of
protective immunity and re-infections common within
80 days [85] to one year [252–255]. Tere is no
observable associa
tion between endemic HCoV re-infection and infection
severity [254]. Waning of humoral immunity within a
year [256–260] and re-infection of immunocompetent
patients [149] have been demonstrated for
SARS-CoV-2, suggesting the possibility of annual
outbreaks [233, 261]. A weaker initial immune
response and sharper decline of antibody levels have
been reported in individuals with asymptomatic
SARS-CoV-2 infections [257, 258]. Tus, multiple
exposures to SARS-CoV-2 may be required to
develop sufcient immunity to prevent future re-infec
tions, which may also be infuenced by adaptive
evolution of SARS-CoV-2 in the human population
(Table 5). Te duration of protection through
vaccination and natural exposures is being closely

monitored, along with anti genic evolution of
SARS-CoV-2 that may lead to immune escape.
Indeed, the evolutionary trajectories of endemic
HCoVs suggest that SARS-CoV-2 will evolve to
co-exist with the human population. However, with
roll-out of the frst ever HCoV vaccines, predicting the
evolutionary tra
jectory of SARS-CoV-2 remains challenging. An
important factor that may infuence ongoing SARS
CoV-2 transmission is the potential for
cross-protection  by humoral and cellular immune
responses induced by  related endemic HCoVs. Tere
is evidence of cross-pro tection within the same
genera of HCoVs [233, 262, 263],  but not between
genera [264]. Tus, immunity against
beta-CoVs HCoV-OC43 and HCoV-HKU1 may
provide  some protection against COVID-19
[265–268], while  immunity against
alpha-CoVs HCoV-229E and HCoV NL63 will
likely provide little to no protection. Anti
body-dependent enhancement has not been observed
for SARS-CoV-2 [269, 270], ruling out the possibility of
increased disease severity by cross-reactive
antibodies  generated against endemic HCoVs. Te
high frequency of  CoV recombination during
co-infections raises the addi tional concern that
SARS-CoV-2 recombination with sea sonal HCoVs
could generate novel CoVs [131, 271, 272].  Te role of
HCoV co-infection has not been reported or
extensively studied and will be especially important for
immunocompromised and elderly individuals.

Conclusions
SARS-CoV-2 continues to evolve and adapt to the
human  population as highlighted by the emergence of
novel vari ants. Mutations within the spike protein of
SARS-CoV-2  variants confer increased
transmissibility and some  degree of resistance to
antibody-mediated neutraliza tion. However, recurrent
attenuating mutations, such as  P323L, L37F, G251V,
and Q27stop have also been iden tifed and are
speculated to reduce disease severity. Te  appearance



of attenuating mutations suggests that SARS CoV-2 is
evolving to become less pathogenic in humans.  Te
current SARS-CoV-2 pandemic is driven by asymp
tomatic, pre-symptomatic, or otherwise unrecognized
cases [273–275]. Reduced pathogenicity of
SARS-CoV-2  combined with mounting
population-level immunity will  likely cause a reduction
of severe cases of COVID-19,  leading to an apparent
abatement of the pandemic, fol lowed by endemic
circulation of low pathogenic SARS CoV-2 variants. A
similar evolutionary trajectory may  have led to the
establishment of current low-pathogenic  endemic
HCoVs [276].

Monitoring future emerging variants of SARS CoV-2
is critical to determine control measures for the
COVID-19 pandemic. Mutations speculated to reduce
immune recognition, such as within the spike protein
(S13I, 69-70del, W152L, A222V, K417N, N439K,
S477N, T478K, E484K/Q, F490S, P681H/R) and
nucleoprotein (RG203KR) should be studied for

reduced sensitivity to natural or vaccine-induced
immunity. Other factors, such as zoonotic and
zooanthroponotic transmission of SARS-CoV-2,
cross-protection through immunity against endemic
HCoVs, and the possible creation of novel ani
mal reservoirs through zooanthroponosis should con
tinue to be investigated as they may have signifcant
implications on the evolutionary trajectory of SARS
CoV-2 and the COVID-19 pandemic.
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